

バイオセンサ

センサの原理と構成

原理		分子認識部に酵素、抗体、細胞器官、微生物を用い、 特定物質を識別して反応させ、反応物質又は生成物質 を検出する。
センサ構成	分子 識別部	酵素、抗体、微生物などを高分子膜などに固定したもの。固定化には、共有結合法、架橋法、包括法、吸着 法などがある。
	検出部	反応物の減少量、又は生成物量をセンサで測定する。
	阻止膜	共存する阻害物質を阻止する。

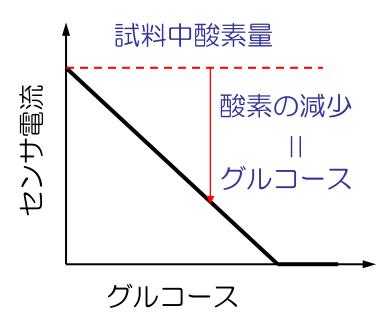
バイオセンサの例

測定対象	酵素	電気化学検出される分子
グルコース	グルコースオキシデーゼ	O ₂ , H ₂ O ₂
乳酸	乳酸脱水素酵素	NADH(メディエー夕利 用)
コレステロール	コレステロールオキシデーゼ	O ₂ , H ₂ O ₂
アミノ酸	アミノ酸オキシデーゼ	O ₂ , H ₂ O ₂ , NH ₃ , CO ₂
尿酸	ウリカーゼ	O ₂ , CO ₂
尿素	ウレアーゼ	NH ₃ , CO ₂
リン脂質	ホスホリパーゼ+コリンオキシ デース	H ₂ O ₂

グルコースセンサの原理

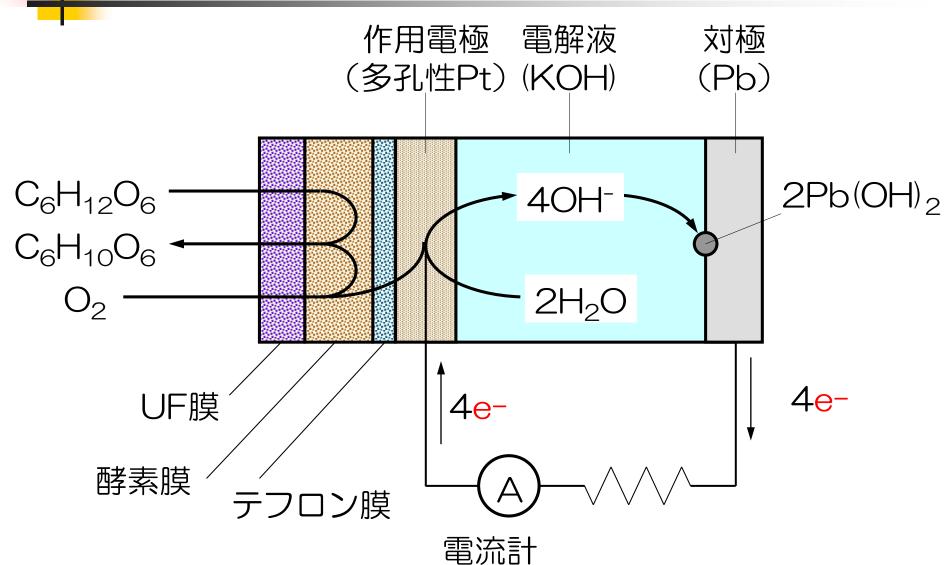
グルコースが存在すると、試料液中の酸素が消費される。

グルコースオキシターゼ


 $C_6H_{12}O_6 + O_2/2 \rightarrow C_6H_{10}O_6 + H_2O$

グルコース

δ-グルコノラクトン


酸素量を酸素センサで測定し、 その減少量からグルコース量 を測定する。

グルコースセンサの構造

グルコースセンサの構造

センサ各部の構成と役割

UF膜	試料、例えば、血液には、他の酵素(タンパク質)などが存在するので、これらの物質を阻止して酵素膜へ達しないようにする。
酵素膜	グルコースオキシターゼをポリアクリルアミドゲル中に 包括固定化したもの。
テフロン膜	疎水性のテフロン膜により、溶解性物質を阻止してPt電 極へ達しないようにする。
Pt電極	多孔質の担体表面にPtを焼き付けたもの。

バイオセンサの事例

バイオセンサ	レセプター	トランスジューサー	被測定物質例
	酵素膜	O ₂ 電極(電流法)	H ₂ O ₂ 、尿素、グルコース、モノア ミン、ショ糖
		H ₂ O電極(電流法)	リン脂質、総コレステロール、グ ルコース
酵素センサ		H⁺電極(電位法)	中性脂肪、ペニシリン
		CO ₂ 電極(電位法)	アミノ酸
		NH3電極(電位法)	尿素
		その他	アルコール
オルガネラセ ンサ	ミトコンドリア電子 伝達系粒子 (ETP)膜	O ₂ 電極(電流法)	NADH
	微生物膜	O ₂ 電極(電流法)	グルコース、資化糖、醋酸、ナイ スタチン、BOD、メタン
微生物センサ		H ₂ 電極(電流法)	BOD、ギ酸
		H ⁺ 電極(電位法)	セファロスポリン、ニコチン
		CO ₂ 電極(電位法)	グルタミン、リジン
	抗原膜	Ag·AgCl電極(電位法)	梅毒抗体、血液型
 免疫センサ	抗体膜	Ag·AgCl電極(電位法)	アルブミン
		O ₂ 電極(電流法)、酵素 免疫法(化学増幅)	lgl, lgA, lgM, アルブミン、HCG, AFP