水熱反応を利用した汚泥削減化システム に関する基礎的研究

奥田 友章¹・古崎 康哲²・村上 定瞭³・笠原 伸介⁴・石川 宗孝⁵

¹学生会員 工修 大阪工業大学大学院 工学研究科土木工学専攻(〒535-8585 大阪市旭区大宮 5-16-1)
 ²正会員 博(エ) 株式会社メイケン(〒658-0021 神戸市東灘区深江本町 3-5-25)
 ³正会員 理博 宇部工業高等専門学校教授 物質工学科(〒755-8555 宇部市常磐台 2-14-1)
 ⁴正会員 博(エ) 大阪工業大学講師 工学部土木工学科(〒535-8585 大阪市旭区大宮 5-16-1)
 ⁵正会員 工博 大阪工業大学教授 工学部土木工学科(〒535-8585 大阪市旭区大宮 5-16-1)

水熱反応を利用した汚泥削減化システムの基本設計に必要な水熱反応条件に関する知見を得ることを目的とし、水 熱反応温度、反応時間および注入汚泥濃度が、汚泥の可溶化、低分子化、ガス化の各特性に及ぼす影響、水熱反応温 度が、可溶化液の生分解性に及ぼす影響について検討した.その結果、(1)汚泥の水熱反応は、先ず汚泥が溶解化し、 次に溶解成分のガス化が進行する逐次反応であること、(2)反応温度が高いほど、反応時間が短くなること、(3)150 ℃ (0.6 MPa)以上の水熱反応により、汚泥の約85%が可溶化されること、(4)反応温度が高くなるにしたがって低分 子化が進行し、可溶化液の生分解性はわずかに増加すること、(5)可溶化液と人工下水の混合液は、微生物を馴致する ことにより6時間程度で分解されること、を明らかにした.

Key Words : hydrothermal reaction, excess sludge, solubilization, depolymerization, biodegradation

1. はじめに

下水処理施設から排出される汚泥量は下水道の普 及に伴い着実に増加している.この汚泥のほとんど が埋立処分されており¹⁾,近年,埋立地の確保が難 しくなるとともに処分費が高騰していることから, 解決策の一つとして汚泥削減化技術の開発が必要と なっている.汚泥削減化技術としては,最近,オゾ ン^{2)や}水熱反応³⁾,高速回転ディスク⁴⁾,湿式ビーズ ミル⁵⁾,好熱細菌⁶⁾などを用いて物理化学的あるいは 生物学的に汚泥を可溶化処理し,その処理液を再度 生物処理することにより微生物由来の汚泥を削減す る技術が注目を集めている.この中で,水熱反応を 利用する技術は,亜臨界域の高温高圧水の加水分解 反応によって汚泥を低分子化し,可溶化する技術で ある³⁾.

水の 374 ℃, 22.1 MPa の状態を臨界点と呼び, 臨 界点以上の水を超臨界水といい, 気体と液体の海面 が消失する.また, 臨界点以下の水を亜臨界水とい い, 酸・アルカリの性質が極めて強く加水分解能を 有する^{7),8)}. 従来の高温高圧水を利用した汚泥処理技 術には, 液状化, 油化, 原料化および湿式酸化があ る.液状化⁹は低温で生物細胞を破壊し,細胞質を 漏出させて脱水汚泥等を流動化することによりパイ プ圧送や噴霧焼却等操作性の向上を図る技術である. 油化¹⁰は炭酸ナトリウム等の触媒存在下の亜臨界水 で,脱水汚泥を加水分解して低分子化し,さらに, 脱炭酸・脱アミノ・再結合等により適当な分子量の 炭化水素成分に富む油状物質を生成させる技術であ る.原料化は,汚泥を亜臨界水により糖・アミノ酸・ 脂肪酸等に加水分解し,工業原料として利用する技 術である.湿式酸化¹¹は亜臨界水または超臨界水で, 酸素や過酸化水素等の酸化剤と反応させ,汚泥を水, 二酸化炭素,窒素酸化物等へ無機化する技術である. しかし,一般に酢酸,アンモニアまでは容易に酸化 されるが,二酸化炭素や窒素酸化物にまで完全に酸 化するには触媒が必要である.

著者ら³⁾は,装置化や運転エネルギーを考慮して, 臨界点以下の水熱反応と生物処理を組み合わせた 『水熱反応を利用した汚泥削減化システム』(以下, 本システムと略す.)の開発を行っている.本システ ムは図-1 に示すようなフローとなり,その原理は 次のようになる.活性汚泥は多数の微生物により構 成されており,微生物の細胞は細胞質と外側を包む

細胞壁からできている.細胞質は比較的分解され易 いが,細胞壁は難分解性の高分子からできており, 通常の生物機能による代謝分解は困難であるが,亜 臨界域での水熱反応を利用することにより,易生物 分解性の物質へ低分子化・可溶化することができる. 本システムは,この可溶化液を生物槽へ返送して微 生物により分解させるものである.

本システムでの低分子化・可溶化とは、汚泥を構 成する微生物細胞の基本単位分子である糖・アミノ 酸・脂肪酸等への完全な分解ではなく、難分解性の 生体高分子物質を微生物で代謝可能な分子サイズに まで解重合することであるので、水熱反応の温度・ 圧力を低くできるのが特徴である.しかしながら、 実際に下水処理場汚泥を対象に検討した例は少なく、 どの程度の水熱反応条件で汚泥を可溶化処理すれば 良いかわかっておらず、また、水熱反応による汚泥 の可溶化特性や可溶化液の生分解性についてはほと んど明らかにされていないのが現状である.

そこで本研究では、水熱反応を利用した汚泥削減 化システムの基本設計に必要な水熱反応条件に関す る知見を得ることを目的とし、下水処理場の返送汚 泥を可溶化処理した場合における、水熱反応温度, 反応時間および注入汚泥濃度が、汚泥の可溶化、低 分子化およびガス化の各可溶化処理特性に及ぼす影 響について検討した.また、本システムでは、水熱 反応によって処理された可溶化液を生物槽に返送し て生物分解することから、水熱反応温度が可溶化液 の生分解性に及ぼす影響についても検討した.

2. 水熱反応による汚泥の可溶化処理特性

(1) 概説

ここでは、水熱反応を利用した汚泥削減化システムの基本設計に必要な亜臨界域での水熱反応条件に 関する知見を得ることを目的とし、下水処理場汚泥 を可溶化処理した場合における、水熱反応温度、反 応時間および注入汚泥濃度が、汚泥の可溶化、低分 子化およびガス化の各可溶化処理特性に及ぼす影響 ついて検討した.なお, 亜臨界域では液相と気相の 2 相が存在するので液相および気相の両反応が起こ る.液相ではイオン反応である加水分解反応が主体 であるが、気相ではラジカル反応が主体で熱分解, 再結合、脱水縮合、脱炭酸等の各反応が同時に進行 する.反応容器内の水の充填率、反応温度、反応時 間、共存する無機イオン等により異なるが、水熱反 応温度が高くなるほど、気相反応が激しくなり、油 状物質・炭化物の生成や揮発性有機低分子物質の生 成量が多くなる.本システムでは、汚泥を構成する 細菌等の細胞を加水分解して低分子化・可溶化する ことが目的であるので,熱分解,再結合,脱水縮合, 脱炭酸等のラジカル反応は副反応となる. ガス化と は副反応によって生じた炭酸ガスや揮発性有機低分 子物質が生じることをいう.

(2) 実験方法

a) 回分式水熱反応装置および水熱反応条件

図-2 に示す回分式水熱反応装置を用いて汚泥の 可溶化処理実験を行った.反応装置は容積 100 mL のインコネル製反応容器にスチール球を入れたもの である.これを振とう機に取り付けて反応液を撹拌 し、反応の促進と温度分布の均一化を図った.反応 装置内の圧力は、液相での加水分解を促進させるた め、図-3 に示すように水の飽和蒸気圧より高い圧 力とした.昇温時間は約 30 分、冷却時間は約 30 分 とし、昇温終了から冷却開始までの反応を保持した 温度、時間をそれぞれ反応温度、反応時間とした.

供試汚泥は, 表-1 に示す性状の下水処理場(標 準活性汚泥法、最初沈殿池あり)の返送汚泥を用い た.反応容器に汚泥を 50 mL 注入し,表-2に示す 条件で実験を行った.実験 I では, 各反応温度にお ける可溶化処理特性を検討するために、反応時間を 60 min, 汚泥濃度を 10,000 mg/L とし, 反応温度を 120~360 ℃に変化させて実験を行った.実験IIでは, 各反応時間における可溶化処理特性を検討するため に、実験Ⅱ-1では反応温度を150℃,汚泥濃度を 10,000 mg/L とし, 反応時間を 10~120 min に変化さ せて実験を行い,実験Ⅱ-2では反応温度を 330 °C, 汚泥濃度を 10,000 mg/L とし,反応時間を 0~120 min に変化させて実験を行った.実験Ⅲでは,各注入汚 泥濃度における可溶化処理特性を検討するために、 反応温度を 150 ℃,反応時間を 60 min とし,汚泥濃 度を約5,000~31,000 mg/L に変化させて実験を行っ た.また、実験II、実験IIIの実験条件は、実験Iの 結果を参考に設定した.

項目	濃度(mg/L)	
汚泥濃度	10000	
蒸発残留物	13402	
強熱残留物	4267	
強熱減量	9135	
TOC	4091	
BOD ₅	4082	
COD _{Gr}	11465	
全糖	1828	

表-2 可溶化処理実験の実験条件

中陸	反応温度	反応時間	污泥濃度
**	°C	min	mg/L
Ι	120~360	60	10000
II -1	150	10~120	10000
II -2	330	0~120	10000
Ш	150	60	約5000~31000

b)分析方法

本研究では、水熱反応後の可溶化液を GF/C ろ紙 (粒子保持能力 1.2 µm) でろ過し、ろ紙に阻止さ れた物質を懸濁性物質、通過した物質を溶解性物質 とした.分析項目およびその方法を以下に示す.

SS および溶解性 BOD₅ (D-BOD₅) は下水試験方

表-3 ゲルろ過の諸条件

ゲル担体	Sephadex G-25 Fine (排除限界 5000 Da)		
ベッド高	90cm		
押し出し液	蒸留水		
押し出し流量	92mL/min		
試料注入量	1 OmL		
1フラクション体積	1 OmL		

法に準拠して測定した. 全有機炭素 (TOC) および 溶解性有機炭素 (DOC), 懸濁性有機炭素 (POC) は 全有機炭素計 (島津製作所, TOC-5000A)を用い て測定した. 全糖は硫酸-フェノール法¹²⁾によって 測定した. 溶解性有機物の分子量分画は, Sephadex g -25 fine (排除限界 5,000 Da)を担体とするゲルろ 過により行った. ゲルろ過の諸条件を**表**-3に示す.

(3) 実験結果および考察

a) 各水熱反応条件における残留 SS 量

図-4に各反応温度における残留 SS 量を示す.反応前の汚泥 (SS)量が 500 mg であるのに対し,反応温度が 150 ℃から可溶化液の残留 SS 量は約 75 mg に減少し,汚泥の約 85 %が可溶化している.また,反応温度が 150 ℃以上の条件においても同様の結果であった.このことは,汚泥中の SS 成分のほとんどが 150 ℃の反応温度で分解を受け,可溶化されることを示している.

図-5に各反応時間における残留 SS 量を示す.反 応前の汚泥量 500 mg に対し,反応温度が 150 ℃の 場合、反応時間を長くするとともに残留 SS 量は減 少し,反応時間が60 minから可溶化液の残留SS量 は約75 mgに減少した.その後は、さらに時間を長 くしても残留 SS 量に大きな変化は見られなかった. このことは,反応温度が150 ℃の場合,汚泥中のSS 成分のほとんどが、60 min の反応時間で十分に可溶 化されることを示している.次に,反応温度が 330 ℃の場合,反応時間が0 min (温度が330 ℃に 到達した瞬間に冷却)から可溶化液の残留 SS 量は 約75 mgに減少しており、その後、さらに時間を長 くしても同様の結果であった。このことは、反応温 度が高いほど反応が速く進むことを示しており、昇 温・冷却中に反応が進み,汚泥が十分に分解された と考えられる.

図-6 に各汚泥濃度における水熱反応前の汚泥量 に対する反応後の SS 量の比(以下,残留 SS 比と略 す.)を示す.汚泥濃度 20,000 mg/L 以下を試料とし

図-6 各汚泥濃度における残留 SS 比(実験Ⅲ)

た場合,残留 SS 比は 0.2 前後であったが,20,000 mg/L 以上では 0.45 前後となり,可溶化しにくくなること がわかった.

b)各水熱反応条件における TOC の物質収支

汚泥の水熱反応に及ぼす因子として、反応温度, 反応時間,反応容器内の試料混合物の充填率,汚泥 濃度等が上げられる.本実験では、反応容器内の汚 泥混合液の充填率を50%とした.反応温度,反応時 間および汚泥濃度の各因子を変化させて水熱反応後 の固形成分,溶解成分およびガス成分の各成分につ いての物質収支を TOC で示したものが図-7~9 で ある.GOC(ガス状 TOC = 初期 TOC - POC -DOC)には、ガス状有機物の他に有機物の脱炭酸化 により生じた二酸化炭素等の無機炭素も含まれる. 図-9 については、汚泥の注入量(濃度)が異なる ので、初期 TOC に対する比率で示した.

反応時間 60 min, 汚泥濃度 10,000 mg/L の実験条 件での反応温度の影響については,温度上昇ととも に固形成分が急激に減少し,150 ℃以上でほぼ一定 となっている.溶解成分は温度上昇とともに増加し て 180~210 ℃で最大に達し,それ以上の温度では 減少している.ガス成分は150 ℃までは急激に増加 しているが,150~240 ℃で増加率が減少し,240 ℃ 以上でガス成分が再び増加している.

反応温度 150 ℃, 汚泥濃度 10,000 mg/L の実験条 件での反応時間の影響については、固形成分は反応 時間とともに急激に減少し,60 min 以上では減少率 が低下している.溶解成分は 10 min 以内で急激に増 加し、その後の増加率は減少している・ガス成分は 反応時間とともに一様に増加している.反応温度 330 ℃, 汚泥濃度 10,000 mg/L の条件での反応時間 の影響については、反応時間0 min でも反応がかな り進行しており、反応温度 150 ℃で 120 min 反応さ せた場合よりも水熱反応が進行している. なお,本 実験では所定温度までの昇温時間が 30 min, 設定温 度に達してからの保持時間を反応時間とし、所定の 保持時間を経過してから約30 min 冷却して常温付近 まで下げた。したがって、昇温および冷却の過程で も水熱反応が進行している.反応温度が高くなるほ ど,昇温・冷却過程における水熱反応の割合が高く なることが考えられる.

反応温度 150 ℃,反応時間 60 min の実験条件での 汚泥濃度の影響については,汚泥濃度が低くなるほ ど固形成分の割合が減少し,18,000 mg/L 以下ではほ ぼ一定となっている.溶解成分の割合は本実験条件 の範囲内ではほぼ一定である.ガス成分の割合は汚 泥濃度の減少とともに増加して,18,000 mg/L 以下で はほぼ一定となっている.

以上の反応温度,反応時間および汚泥濃度をそれ ぞれ操作因子とする汚泥の水熱反応に及ぼす影響に ついての実験結果は、多少の異差は認められるもの の、いずれも操作因子の変化に伴って固形成分が減 少し、溶解成分は増加して減少し、ガス成分は増加 している.このことから以下の結論が得られる.汚 泥の水熱反応においては、先ず、加水分解反応によ り汚泥の構成物質が低分子化されて溶解し、次に溶 解成分のガス化が進行する逐次反応である.ここで、 溶解成分がどの様な成分であるかはこの実験では不 明であり、今後、成分分析を行う必要がある.また、 ガス成分はおそらく前述したように、気相でのラジ カル反応による熱分解、再結合、脱水縮合、脱炭酸 等によって生じた炭酸ガス、揮発性有機低分子物質 等が考えられるが、ガス成分の分析も行っていない

図-7 各反応温度における TOC の物質収支(実験 I)

図-8 各反応時間における TOC の物質収支(実験II)

図-9 各汚泥濃度における TOC/初期 TOC の比 (実験Ⅲ)

ので、今後の検討課題である.さらに、Na⁺, K⁺, Ca²⁺, Mg²⁺, Ba²⁺, NH₄⁺および HCO⁻, CO²⁻等の共存 イオンが水熱反応を促進し,汚泥処理操作における 反応温度の低下や反応時間の短縮に効果がある¹³⁾こ とが知られており,個々の処理施設の汚泥により水 熱反応の状況も異なることが予想される.なお,図 -9 に見られる汚泥濃度の影響については,汚泥量が 多いので逐次反応の初期過程である汚泥の溶解化に 時間を要すること,および,触媒作用を有する共存 イオン(濃度一定)と汚泥(濃度変化)との量的比 率が異なること等の理由が考えられるが,今回の実 験結果のみから考察することは困難であり,汚泥濃 度の影響についてはさらに検討を要する課題である. c) 各水熱反応温度における溶解性有機成分の質変 化

図-10 は反応温度 150 ℃, 180 ℃および 330 ℃ で汚泥を可溶化処理したときの、可溶化液中有機物 の分子量分布を示したものである.反応温度が 150 ℃の場合、可溶化液成分のほとんどが Frac.No.25 以下 (ポリエチレングリコールで分子量 約4.000 Da以上に相当)に出現した.このことから, 150 ℃の可溶化液は比較的分子量の大きい成分で構 成されていることがわかった.しかしながら,180 ℃ においては, Frac.No.25 以下の成分は少なくなり, ピークの位置は 150 ℃のときと比べてフラクショ ンの後段に移動し, 330 ℃においては Frac.No.40~ 50 付近 (ポリエチレングリコールで分子量約 1,000 Da 以下に相当)の成分が約半分を占めるようになっ たことから、反応温度が高いほど可溶化液中の成分 は、より低分子化されることがわかった。以上のこ とから、反応温度が高くなるに従い、有機化合物の 結合が弱い順に分解を受け、可溶化液中の有機物は 低分子化されることが示唆された.

図-11 に各反応温度における溶解性物質中の全 糖を測定した結果を示す。各反応温度における溶解 性の全糖は、反応前と比較すると高い値を示し、反 応温度が180 ℃以下では、温度上昇とともに値が大 きくなっており、反応温度が180 ℃のとき最大とな った。しかしながら、反応温度が180 ℃より高い条 件においては、全糖は可溶化液中にほとんど存在し なくなることがわかった。これは、200 ℃前後で糖 の分子環の開裂反応が起こったためと考えられる。

図-4~9 および図-10, 11 の結果より,水熱反応 によって微生物細胞内の生体高分子物質(多糖,タ ンパク質,核酸,ポリリン酸等)が加水分解され, これらの高分子物質の単量体またはそれらの低重合 体へ解重合されて可溶化したと推察される。生体高 分子物質の中でも細胞壁(ペプチドグリカンと呼ば れる多糖鎖が短いペプチド鎖で架橋された複雑な構 造)成分は特に生物分解が難しいといわれているが, 水熱反応を利用することで容易に低分子物質へ分解 できることが示唆された.

また,これまでに報告した研究¹⁴⁾において,スキ ムミルクに無機塩類を加えた人工下水を原水とする 活性汚泥法の余剰汚泥を用い,反応時間 60 min,汚 泥濃度 10,000 mg/L の実験条件で各反応温度におけ る溶解成分を液体クロマトグラフ法により分析した ところ,以下の結果が得られている.汚泥の低分子 化に伴って生成した物質は,各種のオリゴ糖・単糖 およびその分子環が開裂したもの,ポリペプチド, アミノ酸,有機酸等であった.生成した各低分子物

質の一部についてその濃度(相対量)を調べたところ,180 ℃付近からこれらの低分子物質が生成し, これらの濃度は温度上昇とともに増加した.これら の低分子物質の中には、増加して減少したものもあ った.さらに、低分子物質の総量(相対量)を調べ たところ、総量は 200 ℃付近から急激に増加し, 270 ℃以上でほぼ一定となった.さらに、反応液中 のリン濃度を測定したところ,100 ℃から急激にリ ン濃度が増加し,180 ℃以上では汚泥中のリンはす べて溶出してオルトリン酸態として存在した.また, アンモニアについては、160 ℃から検出され、温度 上昇とともに一様に増加した.200 ℃においてオル トリン酸とアンモニアのモル比が1:1で,これ以上 の温度ではアンモニアのモル濃度がリン酸より高く なった.

次に,可溶化液の低分子化にともなう生分解性の 変化について検討してみると,図-12に示す各反応 温度における D-BOD₅/DOC の結果から,反応温度が 高くなると D-BOD₅/DOC の値がやや高くなる傾向 がみられ,反応温度が高いほど生分解性が改善され ている.しかし,生分解性の反応温度による影響は 大きいものではないと推察される.

d) 水熱反応条件の検討と処理コスト

水熱反応条件を決める上で考慮しなければならな い点を以下に示す.

①汚泥が水熱反応により十分に可溶化されること. ②可溶化液の生分解性が高いこと.

- ③装置化および維持管理面から,反応温度および圧 力が低いこと.
- ④コスト面から、反応時間が短く、注入汚泥濃度が 高いこと。

以上の点を考慮に入れて水熱反応条件を検討する と、2.3.a~2.3.cの結果から、汚泥が約85%可溶化さ れる反応温度は150 ℃ (反応圧力0.6 MPa)以上で あり、この温度以上では、固形成分の量、溶解成分 の量に大きな違いが無いことが明らかとなった.し かしながら、全糖および分子量分画の結果から、 200 ℃前後で可溶化液の低分子化が進行することが 示唆され、さらに、反応温度によって可溶化成分が 異なることが明らかとなった.このことから、150 ~200 ℃の比較的低温での可溶化液と240~360 ℃ の可溶化液では,生分解性が異なる可能性が示唆さ れた.

反応時間については、比較的低温(150 ℃)での 水熱反応においては、十分な可溶化液を得るために は 60 min 以上の反応時間が必要であるが、高温の場 合では昇温、冷却中に反応が十分進むため、反応時 間はほとんど考慮する必要がない.

反応に供する汚泥濃度は、反応時間 60 min の条件 下で汚泥の約 85 %の可溶化を考えた場合 5,000~ 20,000 mg/L が適当であり、返送汚泥、濃縮汚泥など が適用可能である.

以上の結果から,装置化および維持管理を考慮し た反応温度,反応時間を決定することになるが,比 較的低温での可溶化液と高温での可溶化液の生分解 性についてはさらに検討する必要がある.

ここで, 20,000 mg/L の余剰汚泥を 150 ℃, 60 min 水熱反応処理するときの汚泥処理コストを試算する と次のようになる.なお,水熱反応処理装置は,連 続処理装置とし、汚泥導入部、加熱部、反応(温度 保持)部,冷却部,減圧部から構成されるものとし, 加熱部と冷却部との間で熱交換を行うものとする. もし、仮に装置の保温が完全で、冷却と加熱との熱 交換率が100%であれば、水熱反応装置の運転コス トは汚泥導入部の高圧ポンプの駆動エネルギーを除 いて外部からのエネルギーは不要である.ここで, 装置の保温を完全なものとし、熱交換率を 0.80、電 気代を 12 円/kWh とすると、汚泥 1 m³の電気代は (150-20) (°C) ×4.2 (MJ/m³-SS) × (1-0.8) /3.6 $(MJ/kWh) \times 12 [\frac{1}{k}Wh] = 364 [\frac{1}{k} m^3 - SS] \geq c_3 a_1$ なお,1日に下水処理場から1%濃度の余剰汚泥が流 入水量に対して2%発生する¹⁵⁾と流入水量1m³に対 して, 20,000 mg/L の余剰汚泥が 0.01 m3発生するこ とになるので,汚泥処理コストは 3.6〔¥/m³-原水〕 となる.また,電気エネルギー以外の低コストの熱 源を用いれば,処理コストはさらに低減できる.た だし、このコストに汚泥の濃縮、移送および導入の コストは含まれない.

3. 可溶化液の生分解性

(1) 概説

ここでは,先に得られた知見を基に,水熱反応に よって可溶化処理された処理液の生分解性を検討す るために回分式の生物処理実験を行った.

(2) 実験方法

可溶化液の生分解性を検討するために回分式の生

表-4 回分実験の実験条件

Run	微生物	投入基質		
Run.		可溶化液のDOC;	農度 (mg/L)	人工下水のDOC濃度(mg/L)
1	下水処理場汚泥	反応温度150℃	50, 100, 200	-
2	下水処理場汚泥	反応温度330℃	50, 100, 200	-
3	馴致汚泥	反応温度150℃	50, 100, 200	-
4	下水処理場汚泥	-		50, 100, 200
5	下水処理場汚泥	反応温度150°C	40	200
6	下水処理場汚泥	反応温度330℃	40	200
7	馴致汚泥	反応温度150°C	40	200
8	下水処理場汚泥	-		200

物処理実験を行った.実験方法としては、1 L の三 角フラスコに表-4 に示す条件となるように、微生 物(下水処理場汚泥と馴致汚泥:汚泥濃度約 2,000 mg/L)と基質(ペプトン、肉エキスを主成分とした 人工下水と可溶化液)を合計 500 mL 投入し、所定 時間ごとにサンプリングを行い、DOC と MLSS を測 定した.実験に供した可溶化液の水熱反応条件は、 反応温度 150 ℃と 330 ℃、反応時間 60 min、注入汚 泥濃度 10,000 mg/L である.

Run.1~Run.4 では,投入基質濃度を3 段階に変化 させて DOC の経時変化を測定し,Monod 式より動 力学パラメータを算出した.Run.5~Run.8 では,人 工下水と可溶化液の負荷の割合を5:1 として DOC の経時変化を測定した.

本研究では、可溶化液により馴致された微生物を 馴致汚泥とした.なお、1日に下水処理場から1% 濃度の余剰汚泥が流入水量に対して2%発生する¹⁵⁾ として、その全量を水熱反応により可溶化した場合 の、原水と可溶化液の負荷の割合を、原水5に対し て可溶化液を1と定めた.馴致汚泥は、表-1に示 す性状の下水処理場返送汚泥を種汚泥とし、水熱反 応温度150 ℃・反応時間60 min・注入汚泥濃度10,000 mg/Lの条件で処理した可溶化液を基質として1日1 サイクルのFill and Draw 方式で3週間馴養した活性 汚泥である.

(3) 実験結果および考察

a) 可溶化液の生分解性

図-13に回分実験 Run.1~Run.4の DOC の経時変 化を示す. Run.1, Run.2 とも DOC の減少傾向はほ ぼ同じであり,反応温度による可溶化液の生分解性 に大きな違いは見られなかった.また,これらはい ずれも人工下水と比較して分解を受けにくいことが わかった.馴致汚泥を用いた実験では,生分解性が かなり向上し,6時間後までに DOC が 50 %以上分 解されている.しかし,馴致汚泥でも6時間以内で 分解できない成分があり,約50 %の DOC が残存し ている.図-10に示すように 150 ℃での可溶化液中

図-13 回分実験 Run.1~Run.4の DOC の経時変化

の溶解成分は比較的分子量の大きい成分(エチレン グリコールで分子量約4,000 Da以上)である.また, 図-12 に示すように,可溶化液の生分解性は,可溶 化液の BOD₅/DOC が1前後の値(BOD₅/COD_{cr}が0.3 前後の値)であり,微生物の馴致が必要であるが生 物処理できる範囲である¹⁶⁾と推定される.これらの 事実は,下水処理場汚泥は溶解成分を分解する酵素 を有しているものの,その酵素活性を発現するまで に本実験時間以上の時間を要することを示唆してい る.

次に,これらの結果を次式に示す Monod 型反応式 を用いて検討した.

$$\frac{dC}{dt} = \frac{kXC}{Ks+C}$$
(1)

ここで,dC/dt:基質除去速度(mg/L・day),k:最
 大基質除去速度定数(1/day),Ks:飽和定数(mg/L),
 X:汚泥濃度(mg/L),C:基質濃度(mg/L)

式(1)を変換し、図-14に示すL-Bプロットか ら,最大基質除去速度定数と飽和定数を求めたもの を表-5 に示す.下水処理場汚泥を用いた場合の最 大基質除去速度定数および飽和定数は,反応温度 330 ℃の可溶化液の方がやや高いもののいずれも約 0.8 1/day,約 600 mg/L であった.先に,可溶化処理 を行うときの反応温度が高い方が、より可溶化液成 分が低分子化されることを示したが、水熱反応によ る低分子化は、生分解性そのものの向上にはつなが らないことが示唆された.また,これらは,基質を 人工下水とした場合のパラメータと比較して、最大 |基質除去速度定数が約 1/3 であり,馴致を行った場 合でも約 1/2 であった.以上のことから,可溶化液 には、通常の排水中には含まれない成分が含まれて いることが示唆された.水熱反応による可溶化液の 生分解性については,反応生成物の化学分析および

図-14 回分実験 Run.1~Run.4のL-B プロット

表-5 各 Run の動力学パラメータ

Run.	微生物	投入基實	最大基質除去速度 定数k:(1/day)	飽和定数 Ks:(mg/L)
1	下水処理場 汚泥	150℃ 可溶化液	0. 78	647
2	下水処理場 汚泥	330℃ 可溶化液	0. 84	578
3	馴致汚泥	150℃ 可溶化液	1.45	383
4	下水処理場 汚泥	人工下水	3. 40	505

微生物の馴致等を含めて,今後さらに詳しく検討を 行う必要がある.

b) 混合液(人工下水+可溶化液)の生分解性

図-15に回分実験 Run.5~Run.8のDOCの経時変 化を示す.混合液(人工下水と150℃および330℃ の可溶化液)を下水処理場汚泥に投入した Run.5 お よび Run.6 と人工下水のみを投入した Run.8 を比較 すると、実験開始直後から DOC の減少傾向に大き な差がみられ,混合液の方が分解されにくいことが わかった.また,Run.5,Run.6 ともに,6時間後ま でに処理しきれなかった有機物が DOC として約 30 mg/L 残存した.このことから,可溶化液が負荷とし て約 17%混合した場合,流入下水の分解が阻害され る可能性が示唆された.

ところが、馴致汚泥を用いた Run.7 では、DOC の 減少傾向は人工下水のみを投入した Run.8 とほぼ同 じであった.このことは、可溶化液を原水と混合し た場合でも、微生物を馴致することにより、6 時間 程度で生物分解できることを示している.前述した 汚泥の可溶化液の馴致汚泥による生分解性試験では、 約 50 %の DOC が残存しているのに対し、可溶化液 と原水の混合液では、原水のみと同等な処理水質が 得られている.何故このような異差が生じたのか、 現在のところ不明である.しかし、これまでに報告 した研究^{14)、17)}、すなわち、スキムミルクおよび無 機塩類から調整した人工下水を連続投入した活性汚

図-15 回分実験 Run.5~Run.8の DOC 経時変化

泥法(原水 BOD 300 mg/L, HRT 24 時間, SRT 20 日)
においても,余剰汚泥を 200 ℃で1時間水熱反応処理し,人工下水と混合して曝気槽へ投入した実験系(MLSS 3,000 mg/L)の処理水質は,余剰汚泥を抜き取った対照系(MLSS 2,500 mg/L)の処理水(BOD₅: 5 mg/L 以下, COD_{Mn}: 10 mg/L 以下, TOC: 10 mg/L 以下)と同等の水質が得られている.

以上のことから,150 ℃,60 min の水熱反応によ り余剰汚泥を処理した可溶化液を曝気槽へ連続的に 返送した系においては、微生物が馴致され、馴致さ れた微生物が可溶化液を分解し、余剰汚泥を抜き取 って排出する系と同等な処理水質が得られることが 示唆されるが、今後、余剰汚泥の可溶化液を原水と 混合して連続投入する活性汚泥法により、可溶化液 の生分解性を実験的に調べる必要がある.

4. おわりに

本研究では、水熱反応を利用した汚泥削減化シス テムの基本設計に必要な水熱反応条件に関する知見 を得ることを目的とし、下水処理場の返送汚泥を可 溶化処理した場合における、水熱反応温度、反応時 間および注入汚泥濃度が、汚泥の可溶化、低分子化、 ガス化の各特性に及ぼす影響、水熱反応温度が、可 溶化液の生分解性に及ぼす影響について検討した. 得られた結果を以下にまとめる.

(1)汚泥の水熱反応は、先ず、加水分解反応により 汚泥の構成物質が低分子化されて溶解し、次に 溶解成分のガス化が進行する逐次反応であっ た、反応温度が高いほど、反応時間が長いほど、 逐次反応が進行した。例えば、反応時間 60 min, 汚泥濃度 10,000 mg/L の実験条件では、温度上 昇とともに固形成分が急激に減少して、 150 ℃(0.6 MPa)以上ではほぼ一定(汚泥可 溶化率 85 %)に達し、溶解成分は温度上昇と ともに増加して 180~210 ℃で最大に達して減 少した.また,溶解成分の生分解性は温度の上 昇とともに改善したが,その効果はわずかであ った.

- (2)反応時間 60 min の条件では、150 ℃以上で汚泥の可溶化率は約 85 %でほぼ一定となるので、装置化および運転コストから考えて、150 ℃での可溶化処理が適当と思われる.
- (3)反応時間 60 min, 150℃の条件では、反応に供 する汚泥濃度は,85%程度の汚泥可溶化率を考 えた場合 5,000~20,000 mg/L が適当であり,返 送汚泥,濃縮汚泥などが適用可能である.
- (4) 汚泥の溶解成分は,通常の排水には含まれない 物質であり、下水処理場汚泥では分解性が低い が,汚泥を馴致することにより分解性が改善さ れた.また,150 ℃,60 minの水熱反応による 可溶化液と人工下水の混合液は,馴致汚泥によ り6時間程度で生物分解された.
- (5)余剰汚泥を処理した可溶化液を曝気槽へ連続的 に返送した系においては、微生物が馴致され、 馴致された微生物が可溶化液を分解し、余剰汚 泥を抜き取って排出する系と同等な処理水質 が得られることが示唆されるが、今後、余剰汚 泥の可溶化液を原水と混合して連続投入する 活性汚泥法により、可溶化液の生物処理特性を 実験的に調べる必要がある。

今後、本報で得られた知見をもとに、従来型の活 性汚泥装置に連続式水熱反応装置を組み込んだ連続 排水処理実験を行い、可溶化液の生物処理特性を調 べるとともに、水熱反応を利用した汚泥削減化シス テムの最適設計に必要なデータを収集する予定であ る.

謝辞:本研究を遂行するに当たり,松下環境空調エ ンジニアリング(株),水道機工(株),前澤工業(株), アタカ工業(株)から多大な御協力を頂きました. また,大阪工業大学衛生工学研究室の皆様にも大変 お世話になりました.ここに記して謝意を表します.

参考文献

- 石川宗孝:余剰汚泥の削減化技術の特徴と今後,環境 技術, Vol.28, No.8, pp.523-526, 1999.
- 2) 安井英斉,深瀬哲朗,堺好雄,松橋隆治:余剰汚泥を 生成しない活性汚泥法の運転例,環境技術,Vol.28, No.8, pp.527-531, 1999.
- 村上定瞭,谷口稔,清水英男,竹内正美,石川宗孝, 中西弘:水熱反応を用いる汚泥消減型生物法(水熱・ 生物法)に関する研究,環境技術,Vol.28, No.8, pp.566-570, 1999.

- 今井剛,深川勝之,永田博文,原田利男,浮田正夫: 高速回転ディスクによる汚泥の可溶化処理,環境技術, Vol.28, No.8, pp.556-561, 1999.
- 5) 名和慶東: ミル破砕工程を含む汚泥減容化の研究,環 境技術, Vol.28, No.8, pp.562-565, 1999.
- 塩田憲明,赤司昭,長谷川進:好熱細菌を利用した余 剰汚泥の発生しない活性汚泥法,環境技術,Vol.28, No.8, pp.532-534, 1999.
- 7) Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, C.A. and Frnck, E.U.: Supercritical Water, C&EN, No.12, pp.26-39, 1991.
- 8) 向坊隆, 増川重彦: 高温高圧水の化学, 電気化学, Vol.32, pp.252-259, pp.336-341, pp.416-423, 1964.
- 9) オルガノ,中外炉工業:メルトシステム,Cat.No.A-50-5, 1997.
- 10) 横山伸也, 鈴木明: 下水汚泥の油化処理技術, 産業公 害, VOL.26, No.7, pp.530-536, 1990.
- 第田吉明,山崎健一:触媒湿式酸化法による汚泥処理 適用研究,廃棄物学会論文誌,Vol.7,No.3,pp.123-132, 1996.

- 12) 福井作蔵: 生物化学実験法 I -還元糖の定量法-,(株) 学会出版センター, pp.45, 1978.
- 13)石川島播磨重工株式会社:有機性廃棄物の可溶化処理 法,特開 2001-009410 号.
- 14)村上定瞭:水熱反応を用いる汚泥削減型生物の開発事例,新しい水処理技術③汚泥の減量化と発生防止技術,エヌ・ティー・エス,pp.271-288,2000.
- 15) 松本順一郎, 西堀清六: 新版 下水道工学, 朝倉書店, pp.153-155, 1995.
- 16) Symons, J. M., Mckinney, R. E. and Hassis, H. H.: A Procedure for Determination of the Biological Treatability of Industrial Waters, Jour. WPCF, Vol.32, No.8, pp.841-852, 1960.
- 17)村上定瞭,竹内正美,石川宗孝:余剰汚泥消滅型活性 汚泥法の類型と汚泥・処理水の性状,第35回日本水環 境学会年会講演集,pp.288,2001.

(2000.10.19 受付)

STUDY ON THE VOLUME REDUCTION SYSTEM OF EXCESS SLUDGE BY HYDROTHERMAL REACTION

Tomoaki OKUDA, Yasunori KOSAKI, Sadaaki MURAKAMI, Shinsuke KASAHARA and Munetaka ISHIKAWA

The characteristics of solubilization of excess sludge by hydrothermal reaction and the biodegradability of hydrothermally treated sludge were investigated. The effects of the reaction temperature, time and sludge concentration were evaluated. Experimental results suggested that (1) the hydrothermal reaction of the excess sludge was successive reaction, the solubilization of the sludge followed by the gasification, (2) the reaction time was shorten with the temperature increasing, (3) about 85 % of the sludge was solubilized above 150 °C (0.6 MPa), (4) the depolymerization of the sludge cell was advanced with the temperature increasing, while the biodegradability was slightly increased, (5) the mixture of the hydrothermally treated sludge and the artificial sewage was biologically destructed in about 6 hours by acclimated microorganism.